
Available online at www.sciencedirect.com
Chaos, Solitons and Fractals 40 (2009) 2557–2568

www.elsevier.com/locate/chaos
Logistic chaotic maps for binary numbers generations

Ali Kanso, Nejib Smaoui *

Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Accepted 30 October 2007
Abstract

Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applica-
tions, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like prop-
erties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption
step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the
keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the
floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear
complexity and very good statistical properties. The systems are put forward for security evaluation by the crypto-
graphic committees.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Cryptography addresses a wide range of problems such as confidentiality, data integrity, entity authentication, and
data origin authentications. One of the field’s central goals remains the classical one of maintaining privacy of commu-
nications across a public channel. The techniques of secure communication by which one can exchange private messages
secretively over public channels are of great interest in many areas, including systems for electronic commerce, data-
base, secure electronic mail, internet banking, etc. [1]. A cryptosystem is an algorithm that transforms an original mes-
sage, referred to as plaintext, into a scrambled (non-readable) message, referred to as ciphertext and recovers the
message back in its original form. The transformation process from the plaintext to the ciphertext is controlled by a
key, and is known as the encryption process, while the transformation process from the ciphertext to the plaintext is
also controlled by a key, and is known as the decryption process.

Based on the structure of the algorithm, cryptosystem can be classified into two categories, block ciphers and stream
ciphers. Block ciphers tend to simultaneously encrypt groups of characters, whereas stream ciphers operate on individ-
ual characters of a plaintext message one at a time. In another classification, which is based on the method of distri-
bution of secret key, one classifies cryptosystem into two classes, the symmetric (private) key and the asymmetric
(public) key cryptosystems. In a symmetric key cryptosystem, the key used in the decryption process is the same as
(or can be easily obtained from) the key used in the encryption process. Thus, knowledge of the enciphering key is
0960-0779/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chaos.2007.10.049

* Corresponding author.
E-mail addresses: akanso@hotmail.com (A. Kanso), nsmaoui64@yahoo.com (N. Smaoui).

mailto:akanso@hotmail.com
mailto:nsmaoui64@yahoo.com


2558 A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568
equivalent to knowledge of the deciphering key. In an asymmetric cryptosystem, the sender and receiver hold different
(but related) keys. In such a system, the receiver’s key and the decryption algorithm determine the reverse of the trans-
formation. For public-key algorithm, the key used in the decryption process is computationally infeasible to compute
from the one used for encryption. Thus, public-key algorithms permit the encryption key to be public (it can even be
published in a newspaper), allowing anyone to encrypt with the key, whereas only the proper recipient (who knows the
decryption key) can decrypt the message. The encryption key is also called the public key and the decryption key is
called the private key or the secret key.

A common way to build a stream cipher is to use a pseudorandom sequence (or keystream) generator and mask the
plaintext using the output of the keystream generator to produce the ciphertext. A binary additive stream cipher is a
synchronous stream cipher in which the keystream, the plaintext and the ciphertext are binary sequences. The plaintext
sequence m1;m2; . . . is masked using bit-wise addition modulo 2 (XOR) with the output sequence of the keystream gen-
erator, whose initial state constitutes the secret key k, z1; z2; . . . to produce the ciphertext sequence c1; c2; . . .. Each secret
key k as input to the keystream generator corresponds to an output sequence. Since the secret key k is shared between
the transmitter and the receiver, the receiver can decrypt by XORing the output sequence of the keystream generator
with the ciphertext sequence, obtaining the plaintext sequence. An efficient stream cipher generator is a generator whose
output sequences are in some sense indistinguishable from truly random sequences. A suitable stream cipher generator
should be resistant against a known-plaintext attack. In a known-plaintext attack the cryptanalyst has access to a
ciphertext and the corresponding plaintext (i.e., part of the keystream sequence), and the challenge is to determine
the key k. Apart from the security issues, when implemented in software, we would like our cipher to be very fast
and deterministic on different platforms. A number of stream ciphers have been proposed in the literature [1]. Most
of them have been bit-oriented stream ciphers based on linear feedback shift registers (LFSRs) [2].

The main difficulty with symmetric key cryptosystems lies in the security of the secret key k that is to be exchanged
between the sender and the receiver. However, one can overcome this problem by using a secure channel, or an asym-
metric cryptosystem such as RSA [1] to exchange the secret key k.

Most of the existing cryptosystems that have appeared in the literature [1], except few, utilize number theory, com-
binatorics, algebra, etc. as mathematical tools for constructing the cryptosystems algorithms.

The possibility of using chaotic signals to carry information was first proposed in 1993 by Hayes et al. [3] and, since
then, chaotic communications have been given much attention and become an important topic in both nonlinear science
and engineering. The high sensitivity of chaotic systems to their initial conditions and parameters together with the
uncorrelation, random-like and unpredictability, yet deterministic and easily reproducible, of the chaotic signals can
be very helpful in improving the security of transmission in communications. Chaotic communication systems are based
either on discrete or continuous systems. In recent years, a growing number of cryptosystems based on continuous sys-
tems utilize the idea of synchronization of chaos [4–8]. However, recent studies show that the performance of these sys-
tems is very poor and insecure [9–11]. The insecurity results mainly from the insensitivity of synchronization to system
parameters [12]. Recently, discrete chaotic communication systems have been given much more attention [13–30]. Most
of these discrete chaotic cryptosystem algorithms use one or more chaotic maps as pseudorandom number generators to
generate a binary keystream that is used for encryption of a plaintext message to produce a ciphertext. The secret key of
such systems constitutes the initial values and/or the system parameters.

In this paper, two binary sequence generators are proposed. One is based on a single one-dimensional logistic map
and the other is based on two logistic maps. Both systems are explored to generate pseudorandom binary keystreams
for stream cipher applications. The encryption step proposed in both algorithms consists of just a simple bitwise XOR
operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary
sequence.

This paper is structured as follows. In Section 2, the properties of the logistic map are discussed. In Section 3, a com-
plete description of the binary sequence generators is presented. The statistical properties of these sequences are dis-
cussed in Section 4. Section 5 consists of some experimental results. Some concluding remarks are presented in
Section 6.
2. The logistic map

One of the simplest and most studied nonlinear system is the logistic map. It was originally introduced as a demo-
graphic model by Pierre Franois Verhulst in 1838. In 1947, Ulam and von Neumann [31] studied the logistic map as
pseudorandom number generator. The logistic map is given by:
xnþ1 ¼ kxnð1� xnÞ ð1Þ



A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568 2559
where xn 2 ð0; 1Þ and k are the system variable and parameter, respectively, and n is the number of iterations. Thus,
given an initial value x0 and a parameter k; the series fxng1n¼0 is computed. In this paper, we refer to x0 and k as the
initial state of the logistic map.

Fig. 1 shows the bifurcation diagram of this map. This is a plot of the logistic map as a function of k. For 0 6 k 6 1;
the trivial solution is the only fixed point. For 1 < k 6 3; we have a non-trivial fixed point. For 3 < k 6 3:57, the map
exhibits the phenomenon of periodic doubling. For 3:57 < k 6 4, the map becomes chaotic. Finally, for k ¼ 4, we
observe that chaos values are generated in the complete range of 0–1. Fig. 2 is a blow up of Fig. 1 for the values of
k between 3.5 and 4.

In this paper, the logistic map that we are interested in for the generation of binary keystreams for cryptographic
applications is of the form
xnþ1 ¼ kxnð1� xnÞ; for xn 2 ð0; 1Þ; and k 2 ð3:99996; 4�:
The choice of k in the equation above guarantees the existence of a chaotic orbit that can be shadowed by only one map
as stated in [32]. Furthermore, the above map is supposed to have good qualities as a pseudorandom number generator
when k ffi 4 (see [23,33,34]).
Fig. 1. The bifurcation diagram for the logistic map.

Fig. 2. A blow up of Fig. 1 for the values of 3:5 6 k 6 4.



Fig. 3. The attractor of the logistic map.

2560 A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568
The iterative values fxng1n¼0, for the values of k in the above equation, exhibit sensitive dependence on initial state,
and long-term unpredictability. Although these values are limited between bounds, they are pseudorandom and do not
converge after any value of iterations. However, these values are highly deterministic as it can be noted from their struc-
ture in Fig. 3. This makes the system insecure for cryptographic applications. The most fascinating aspect of the logistic
map is its very sensitive dependence upon its initial state. For example, if the initial state is subjected to a disturbance as
small as 10�30; iterative values generated after some number of iterations are completely different from each other. As
mentioned earlier, this high sensitivity to initial state makes logistic maps and other chaotic maps very important com-
ponents for cryptographic applications.
3. Proposed pseudorandom bits generators

Generating a pseudorandom binary sequence from the orbit of the logistic map
xnþ1 ¼ kxnð1� xnÞ; for xn 2 ð0; 1Þ; and k 2 ð3:99996; 4�; ð2Þ
essentially requires mapping the state of the system to f0; 1g: A simple way for turning a real number xi to a discrete bit
symbol zi is simply by using a threshold function [33]:
zi ¼ F ðxiÞ ¼
0; if xi < c;

1; otherwise:

�
ð3Þ
Here, c is an appropriately chosen threshold value for xi: For balanced binary sequence fzig1i¼0, c should be chosen such
that the likelihood of xi < c is equal to that of xi P c:

In [35] it is shown that, for k ¼ 4, the logistic map is ergodic, which implies that 8 i and almost 8x0:

1. zi and ziþ1 behave as if statistically independent,
2. zi is equally likely to be 0 or 1.

Since the two symbols 0 and 1 are equally likely to occur for almost all x0; it is also true that, for any positive integer
m, all m-bit strings occur with equal probability. This is the main reason behind our choice for the parameter
k 2 ð3:99996; 4�:

For the logistic map (2), 0:5 is approximately the middle of the minimum and maximum of the xi values, thus,
c ¼ 0:5 will be a perfect choice [36].



A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568 2561
3.1. Proposed pseudorandom bits generator LOGMAP1

The first binary sequence generator proposed in this paper is based on a logistic map (2), and referred to as
LOGMAP1. The secret key, k, consists of the initial value x0 and the system parameter k. The algorithm mixes the binary
sequence fzig1i¼0; generated from (3) by the logistic map (2), using XOR operation with another binary sequence fwig1i¼0

generated from the same logistic map as follows:
First, we define a function G : ð0; 1Þ ! ð0; 1Þ such that GðxiÞ ¼

Pi
h¼0xhðmod1Þ.

Then, we turn the real number GðxiÞ to a discrete bit symbol wi as before using the threshold function:
wi ¼ F ðGðxiÞÞ ¼
0; if GðxiÞ < 0:5;

1; otherwise:

�
ð4Þ
Finally, the binary sequence faig1i¼0 of the algorithm is obtained by mixing the two sequences fzig1i¼0 and fwig1i¼0 using
XOR operation. That is,
ai ¼ zi � wi: ð5Þ
For the chosen threshold value c ¼ 0:5, the generated sequences pass most of the basic tests for randomness of well-
known suites such as Beker and Piper’s suite [37] and the FIPS 140-1 suite [38].

Briefly, the algorithm can be expressed as follows:

Set i ¼ 0:
1. xiþ1 ¼ kxið1� xiÞ.
2. xi ¼ xiþ1.
3. yi ¼

Pi
h¼0xh ðmod 1Þ.

4. ai ¼ F ðxiÞ � F ðyiÞ.

3.2. Proposed pseudorandom bits generator LOGMAPS2

A second new algorithm adopting two logistic maps is proposed for the generation of pseudorandom binary
sequences. This algorithm consists of two logistic maps:
xnþ1 ¼ kxnð1� xnÞ;
x0nþ1 ¼ k0x0nð1� x0nÞ;

ð6Þ
for xn; x0n 2 ð0; 1Þ; and k; k0 2 ð3:99996; 4�.
Define a function SUM that is a mapping from ð0; 2Þ ! ð0; 1Þ to be:
SUMi ¼ ðxi þ x0iÞmod1; ð7Þ
whose attractor is shown in Fig. 4.
The second binary sequence generator proposed in this paper is based on two logistic maps (6), and referred to as

LOGMAP2. The secret key, k, consists of the initial values x0; x00 and the system parameters k; k0. The algorithm mixes the
output of two logistic maps (7) to produce a third real number in ð0; 1Þ.

For the generation of binary sequences we require a mapping of the state of the system to f0; 1g: To do so we apply
the above map (3), with c ¼ 0:5, for turning the real numbers SUMi to discrete bit symbols bi. That is,
bi ¼ F ðSUMiÞ ¼
0; if SUMi < 0:5;

1; otherwise:

�
ð8Þ
Let fbig
1
i¼0 denote the output sequence of LOGMAP2.

For the chosen threshold value c ¼ 0:5, the generated sequences pass most of the basic tests for randomness of well-
known suites such as Beker and Piper’s suite [37] and the FIPS 140-1 suite [38].

Briefly, the algorithm can be expressed as follows:

Set i ¼ 0:
1. xiþ1 ¼ kxið1� xiÞ:
2. xi ¼ xiþ1:
3. x0i ¼ k0x0ið1� x0iÞ:
4. x0i ¼ x0iþ1:



Fig. 4. The combination of two logistic maps represented by the function SUM defined in Eq. (7) destroys the structure of the chaotic
attractor observed in Fig. 3.

2562 A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568
5. SUMi ¼ ðxi þ x0iÞ mod 1.
6. bi ¼ F ðSUMiÞ.

The mixing of two or more sequences is not new in cryptography. For example, Maclaren et al. [39] showed that the
combination of two congruential generators would produce a more complex pseudorandom sequence than an individ-
ual one. Many other combiners based on linear feedback shift registers (LFSRs) such as the shrinking generator, the
self-shrinking generator, the alternating step generator, etc. have also been used as alternate sources for the generations
of pseudorandom binary sequences [1]. The mixing causes the systems to jump from one unstable trajectory to another
one. Both systems remain deterministic as long as the logistic maps are defined.

In the next section, we experimentally demonstrate that sequences produced by the two proposed generators pass all
randomness tests of Beker and Piper’s [37], and FIPS 140-1 [38] which make them appear as random to a cryptanalyst.
Thus, the mixing strengthen the binary sequences faig1i¼0 and fbig

1
i¼0 against various attacks.

Remark 1. It should be noted that the logistic map (2) is non-periodic in nature, but because of finite precision of digital
computers the orbits actually turn out to be periodic [40]. In fact, the logistic map enters a periodic loop after 107 or
more iterations [41].
3.3. Key initialization

In this subsection we discuss some important factors that should be considered before selecting a key for the desired
generator LOGMAP1 or LOGMAP2. Recall that the key of LOGMAP1 consists only of x0 and k, whereas the key of
LOGMAP2 consists of x0; x00; k and k0.

3.3.1. Initial values and system parameters

The initial values x0 and x00 should be chosen randomly from the interval ð0; 1Þ. For good statistical distribution
properties in the generated sequences, the system parameters k and k0 have to be chosen from the interval ð3:99996; 4�.



A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568 2563
3.3.2. Number of decimal places and keyspace

The number of decimal places to be supported depends purely on the desired security of the system. Suppose that
both sender and receiver have calculating machines supporting upon 30 decimal points. In [42] it is shown that a dif-
ference of the order of 10�30 in the initial value leads to different xnþ1 values after only 99 iterations. Thus, for this sen-
sitivity order we can have 1030 possible initial values between 0 and 1. Therefore, increasing the number of decimal
places to be supported results in increasing the keyspace of the desired system and thus increasing its security.

3.3.3. Number of iterations before the encryption/decryption process

For security reasons, and in order to increase the keyspace of the desired algorithm, making use of the high sensi-
tivity of the logistic map (2) upon its initial value and parameter, we iterate that algorithm 200 times without consid-
ering its output bits. Thereafter, the encryption process starts by XORing bitwise the plaintext bits with the keystream
bits produced by the desired generator to produce the ciphertext bits. The decryption process is completely the same as
the encryption process. That is, after the first 200 iterations we start the process by XORing the keystream bits with the
ciphertext bits to reproduce the plaintext bits.

Remark 2. The high sensitivity upon initial values and parameters causes the generator to produce two different
sequences (after some iterations) for the same initial values and parameters if generated on two generating machines
which round off fractions after different decimal places.

In the next section, we consider some statistical properties of the generated sequences. The logistic map is shown in
[43] to generate sequences with forbidden strings for some values of k, such as k ¼ 3:9; 3:91; 3:93; 3:95; 3:96; 3:97; 3:99.
For example, for k ¼ 3:99 the string ‘‘0000’’ never appears in the generated sequences. The proposed generator is shown
to overcome this weakness and produce sequences with better statistical properties than the one of the logistic map with
these values of k.

4. Statistical properties

Due to the difficulty of proving the unpredictability in a theoretical way, sequences generated by the proposed gen-
erators are subjected to statistical tests. The statistical tests alone cannot verify the unpredictability of the produced
sequences which are demanded in cryptographic applications. The predictability of the sequences here is a consequence
of the logistic map. Statistical tests determine whether the sequences possess certain attributes that truly random
sequences would be likely to exhibit. Hence, any random number generator which is proposed for use in cryptographic
applications, must be subject to statistical tests. Beker and Piper [37] described one well-known statistical tests suite
which can be applied to provide a quantitative measure of randomness. This suite includes the frequency test, serial
test, poker test, runs test, and autocorrelation test. All these tests, in their various ways, measure the relative frequencies
of certain patterns of 0’s and 1’s in a section of the sequence. Once we have this measure it is up to us to decide if the
sequence is random enough to our purposes. To do this we establish statistical values corresponding to truly random
sequences and then set a pass mark. As an illustration, suppose our pass mark is 95%. This means that a given sequence
passes the test if its value lies in the range we would expect to find 95% of all truly random sequences.

4.1. Frequency test

In a randomly generated N-bit sequence we would expect approximately half the bits in the sequence to be ones and
approximately half to be zeroes. The frequency test checks that the number of ones in the sequence is not significantly
different from N/2.

4.2. Serial test

The serial test checks that the frequencies of the different transitions in a binary sequence (i.e., 11, 10, 01, and 00) are
approximately equal. This will then give us an indication as to whether or not the bits in the sequence are independent
of their predecessors.

4.3. Poker test

The poker test is a generalization of the frequency test and the serial test. Where the frequency test studies the num-
ber of occurrences of both of the 1-bit patterns, and the serial test studies the number of each of the four 2-bit patterns,
the poker test studies the number of occurrences of each of the 2l l-bit patterns, for some integer l.



2564 A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568
4.4. Runs test

The binary sequence is divided into blocks (runs of ones) and gaps (runs of zeroes). The runs test checks that the
number of runs of various lengths in our sequence are similar to what we would expect to find in a random sequence.
This test is only applied if the sequence has already passed the serial test in which case it is known that the number of
blocks and gaps are in acceptable limits.
Table 1
Statistical tests on the sequences faigP�1

i¼0 and fzigP�1
i¼0 with different initial states and with P = 100,000



Table 2
More statistical tests on the sequences faigP�1

i¼0 and fzigP�1
i¼0 with different initial states and with P = 100,000

A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568 2565
4.5. Autocorrelation test

The idea of this test is to check if there is a correlation between the bits of a given sequence and the bits of a shifted
version of the same sequence. Let fhigN�1

i¼0 be a given binary sequence of length N, then if we consider a shift of size d we
will compare the bit hi with hiþd . If there is no correlation then we would expect hi to be equal to hiþd half the time.



2566 A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568
Beside these randomness tests, a well-know test on stream ciphers is the linear complexity test. Let fhig1i¼0 be a given
binary sequence. The linear complexity is the length of the shortest linear feedback shift register [2] that can generate the
sequence fhig1i¼0. The importance of this attack is based on the fact that, if a sequence has linear complexity m, then
from the knowledge of 2m successive bits of that sequence the whole sequence can be regenerated on a LFSR [2]. Thus,
a sequence intended for use in cryptographic applications must possess high linear complexity, about half the length of
the used sequence. Experimental results have demonstrated that sequences produced by the two proposed generators
achieve linear complexity similar to that of a truly random sequence. That is, about half its length �1.
Table 3
Statistical tests on the sequence fbig

P�1
i¼0 with different initial states and with P = 100,000



A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568 2567
The FIPS 140-1 is another well-known statistical suite [38]. It is issued by the National Institute of Standards and
Technology (NIST). This suite together with Beker and Piper’s suite have been applied to output sequences generated
by LOGMAP1 and LOGMAP2.

In the next section, some experimental results are presented to demonstrate the high linear complexity and good sta-
tistical distribution properties of sequences generated by the proposed generators.
5. Experimental results

In this section we list some results of the statistical tests described in [37] which we applied to the first 100,000 bits of
each generated sequence faig1i¼0 and fbig

1
i¼0 as described in (5) and (8), respectively. We compare these results with those

of the sequence fzig1i¼0 produced by the logistic map (3). In each of these experiments the initial values x0; x00 and the
parameters k; k0 are chosen at random, where x0; x00 2 ð0; 1Þ; and 3:99996 < k; k0 6 4. For all these tests we use
r ¼ 0:05 as the significance level. Each of these sequences is shown to possess high linear complexity similar to that
of a random sequence. The expected value of the linear complexity of a random sequence of length 100,000 is approxi-
mately 50,000. If a given sequence passes all the mentioned tests, or all the tests except 5% of the autocorrelation tests
then it is to be accepted to use as a keystream for stream ciphers applications, otherwise the sequence is to be rejected.

Several sequences faigP�1
i¼0 and fbig

P�1
i¼0 of length P = 100,000 produced by LOGMAP1 and LOGMAP2, whose initial

values x0; x00 2 ð0; 1Þ and parameters k; k0 2 ð3:99996; 4� are randomly chosen, have been put forward for testing using
the FIPS 140-1 and Beker, Piper’s suites. As a result it turned out that over 95% of these sequences passed the tests of
these suites. In comparison with the sequence fzigP�1

i¼0 it turned out that the last sequence failed a much higher number of
tests.

Tables 1–3 include some examples of these experiments. In Tables 1 and 2 we apply some of the statistical tests on
the sequences faigP�1

i¼0 and fzigP�1
i¼0 : In Table 3 we apply the same tests on the sequence fbig

P�1
i¼0 : In these tables ‘‘P’’

denotes that the sequence has passed the corresponding test and ‘‘F’’ denotes that the sequence has failed the corre-
sponding test.
6. Conclusion

In this paper, we have proposed two binary pseudorandom generators based on logistic chaotic maps for crypto-
graphic applications. The proposed generators have strong cryptographic properties such as high sensitivity to initial
values and parameters of the logistic maps together with the uncorrelation, random-like and unpredictability. Several
statistical tests have been applied on the binary sequences produced by both generators to show that over 95% of these
sequences have good statistical distribution properties and high linear complexity. These properties suggest a strong
similarity of these sequences to random sequences. Possible cryptanalysis techniques for these sequences will be the sub-
ject of future work.
References

[1] Menezes AJ, van Oorschot PC, Vanstone SA. Handbook of applied cryptography. CRC Press; 1997.
[2] Golomb SW. Shift register sequences. Aegean Park Press; 1982.
[3] Hayes S, Grebogi C, Ott E. Communicating with chaos. Phys Rev Lett 1993;70(20):3031–4.
[4] Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett 1990;64:821–4.
[5] Cuomo KM, Oppenheim AV. Circuit implementation of synchronized chaos with applications to communications. Phys Rev Lett

1993;71:65–8.
[6] Kocarev L, Parlitz U. General approach for chaotic synchronization with applications to communication. Phys Rev Lett

1995;74:5028–31.
[7] VanWiggeren GD, Roy R. Communicating with chaotic lasers. Science 1998;279:1198–200.
[8] Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS. The synchronization of chaotic systems. Phys Rep 2002;366(1–2):

1–101.
[9] Perez G, Cerdeira H. Extracting messages masked by chaos. Phys Rev Lett 1995;74:1970–3.

[10] Short KM, Parker AT. Unmasking a hyperchaotic communication scheme. Phys Rev E 1998;58:1159–62.
[11] Zhou C, Lai CH. Extracting messages masked by chaotic signals of time-delay systems. Phys Rev E 1999;60(1):320–3.
[12] Wang S, Kuang J, Li J, Luo Y, Lu H, Hu G. Chaos-based secure communications in a large community. Phys Rev E

2002;66:065202.



2568 A. Kanso, N. Smaoui / Chaos, Solitons and Fractals 40 (2009) 2557–2568
[13] Chen G, Mao Y, Chui C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons & Fractals
2004;21(3):749–61.

[14] Lu H, Wang S, Li X, Tang G, Kuang J, Ye W, et al. A new spatiotemporally chaotic cryptosystem and its security and
performance analyses. Chaos 2004;14(3):617–29.

[15] Machado RF, Baptista MS, Grebogi C. Cryptography with chaos at the physical level. Chaos, Solitons & Fractals
2004;21(5):1265–9.

[16] Tang G, Liao X, Chen Y. A novel method for designing S-boxes based on chaotic maps. Chaos, Solitons & Fractals
2005;23(2):413–9.

[17] Xiao D, Liao X, Wong K. An efficient entire chaos-based scheme for deniable authentication. Chaos, Solitons & Fractals
2005;23(4):1327–31.

[18] Huang F, Guan ZH. Cryptosystem using chaotic keys. Chaos, Solitons & Fractals 2005;23(3):851–5.
[19] Huang F, Guan ZH. A modified method of a class of recently presented cryptosystems. Chaos, Solitons & Fractals

2005;23(5):1893–9.
[20] Gao H, Zhang Y, Liang S, Li D. A new chaotic algorithm for image encryption. Chaos, Solitons & Fractals 2006;29(2):393–9.
[21] Ali-Pacha A, Hadj-Said N, M’Hamed A, Belgoraf A. Lorenz’s attractor applied to the stream cipher (Ali-Pacha generator).

Chaos, Solitons & Fractals 2007;33(5):1762–6.
[22] Kotulski Z, Szczepanski J. Discrete chaotic cryptography. Annalen der Physik 1997;6(5):381–94.
[23] Baptista MS. Cryptography with chaos. Phys Lett A 1998;240:50–4.
[24] Alvarez E, Fernandez A, Garca P, Jimenez J, Marcano A. New approach to chaotic encryption. Phys Lett A 1999;263:373–5.
[25] Wong KW, Ho SW, Yung CK. A chaotic cryptography scheme for generating short ciphertext. Phys Lett A 2003;310:67–73.
[26] Lee P, Pei S, Chen Y. Generating chaotic stream ciphers using chaotic systems. Chin J Phys 2003;41:559–81.
[27] Pareek NK, Patidar V, Sud KK. Discrete chaotic cryptography using external key. Phys Lett A 2003;309:75–82.
[28] Pareek NK, Patidar V, Sud KK. Cryptography using multiple one-dimensional chaotic maps. Commun Nonlinear Sci Numer

Simulat 2005;10(7):715–23.
[29] Xiang T, Liao X, Tang G, Chen Y, Wong K. A novel block cryptosystem based on iterating a chaotic map. Phys Lett A

2006;349(1–4):109–15.
[30] Li P, Li Z, Halang Wo, Chen G. A stream cipher based on a spatiotemporal chaotic system. Chaos, Solitons & Fractals

2007;32(5):867–1876.
[31] Ulam SM, von Neumann J. On combination of stochastic and deterministic processes. Bull Am Math Soc 1947;53:1120.
[32] Smaoui N, Kostelich E. Using chaos to shadow the quadratic map for all time. Int J Comput Math 1998;70:117–29.
[33] Li S, Mou X, Cai Y. Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher

cryptography. In: Proceedings of INDOCRYPT 2001. Lecture notes in computer science, vol. 2247. Springer-Verlag. p. 316–29.
[34] Kocarev L, Jakimoski G. Logistic map as a block encryption algorithm. Phys Lett A 2001;289(4–5):199–206.
[35] Schuster HG. Deterministic chaos. Weinheim: Physik Verlag; 1984.
[36] Kotulski Z, Szcepanski J, Gorski K, Gorska A, Paszkiewicz A. On constructive approach to chaotic pseudorandom number

generators. In: Proceedings of RCMCIS 2000, Zegrze. p. 191–203.
[37] Beker H, Piper F. Cipher systems: the protection of communications. New York: van Nostrand Reinhold; 1982.
[38] NIST. Federal Information Processing Standards Publication (FIPS140-1). Security requirements for cryptographic modules;

1994.
[39] Maclaren MD, Marsaglia G. Uniform random number generators. J Assoc Comput Mach 1965;12(17):83–9.
[40] Ott E, Grebogi C, Yorke JA. Roundoff-induced periodicity and the correlation dimension of chaotic attractors. Phys Rev A

1988;38:3688–92.
[41] Phatak SC, Rao SS. Logistic map: a possible random number generator. Phys Rev E 1995;51:3670.
[42] Bose R, Banerjee A. Implementing symmetric key cryptography using chaos functions. In: Seventh international conference on

advanced communications and computing (ADCOM), University of Roorkee, Roorkee, India; 1999. p. 318–21.
[43] Deane JH, Jefferies DJ. Chaotic dynamics and forbidden words. In: Complex 2000 conference, Dunedin, New Zealand, November

2000. www.ee.surrey.ac.uk/Personal/D.Jefferies/ps/forbidden.ps.

http://www.ee.surrey.ac.uk/Personal/D.Jefferies/ps/forbidden.ps

	Logistic chaotic maps for binary numbers generations
	Introduction
	The logistic map
	Proposed pseudorandom bits generators
	Proposed pseudorandom bits generator LOGMAP1
	Proposed pseudorandom bits generator LOGMAPS2
	Key initialization
	Initial values and system parameters
	Number of decimal places and keyspace
	Number of iterations before the encryption/decryption process


	Statistical properties
	Frequency test
	Serial test
	Poker test
	Runs test
	Autocorrelation test

	Experimental results
	Conclusion
	References


